If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+68y+32=0
a = 1; b = 68; c = +32;
Δ = b2-4ac
Δ = 682-4·1·32
Δ = 4496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4496}=\sqrt{16*281}=\sqrt{16}*\sqrt{281}=4\sqrt{281}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(68)-4\sqrt{281}}{2*1}=\frac{-68-4\sqrt{281}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(68)+4\sqrt{281}}{2*1}=\frac{-68+4\sqrt{281}}{2} $
| -t=9(t-90) | | -x3=2x+19 | | 3(2x+10)=96 | | 40^3+14x^2-12x=0 | | 3x=11=4x-33 | | 5a-8a=9 | | 30n+80=20 | | 5x+7=14+3x | | 16y^2=100 | | 4b+5=1=1+5b | | V(x)=π(15x2+180x+540) | | -3(2x-3)=-6x-4-5 | | -15-5=3m+41 | | (x/3)=(11/8) | | 16=3x+x-4 | | 5(x+4)=2x-30+2x | | -4+6k=26 | | w-16=22 | | 0.8(5.28-3x)=-1.5x | | 6(x-3)+8-3x=15+3-(x-1) | | 8x+200=400 | | -5(3+k)=4 | | 8m+7+M=7 | | 2{4-2w}-8=-4 | | 4s+-2s+9s=-11 | | 9d-7d=6 | | u/11=11 | | -10+4j=3j | | 4x–3+2x+5=14 | | -5(5x+6)=2(3x+8) | | 50+2x-150=180 | | 3x-29=2x+27 |